Sarm1 Deletion, but Not WldS, Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy
نویسندگان
چکیده
Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy and/or synaptopathy have not been directly compared. While Sarm1 deletion or WldS can rescue perinatal lethality and widespread Wallerian-like axonopathy in young NMNAT2-deficient mice, we report that an absence of SARM1 enables these mice to survive into old age with no overt phenotype, whereas those rescued by WldS invariantly develop a progressive neuromuscular defect in their hindlimbs from around 3 months of age. We therefore propose Sarm1 deletion as a more reliable tool than WldS for investigating Wallerian-like mechanisms in disease models and suggest that SARM1 blockade may have greater therapeutic potential than WLDS-related strategies.
منابع مشابه
Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism
Wallerian axon degeneration is a form of programmed subcellular death that promotes axon breakdown in disease and injury. Active degeneration requires SARM1 and MAP kinases, including DLK, while the NAD+ synthetic enzyme NMNAT2 prevents degeneration. New studies reveal that these pathways cooperate in a locally mediated axon destruction program, with NAD+ metabolism playing a central role. Here...
متن کاملMechanisms of Observed Neuroprotection of Dopaminergic Neurons in Wallerian Degeneration Slow (WldS) Mice
An emerging hypothesis in Parkinson's disease (PD) is that dopaminergic (DA) neurons degenerate through a " dying back " axonopathy wherein degeneration begins in the distal axon and progresses over time towards the cell body. Impaired axonal transport also appears to play an early, pivotal role in PD. Thus processes that delay axonal transport dysfunction and/or axonal degeneration might slow ...
متن کاملWlds-Mediated Protection of Dopaminergic Fibers in an Animal Model of Parkinson Disease
Parkinson disease (PD) is characterized by the progressive degeneration of substantia nigra dopaminergic neurons projecting to the striatum. Since the deficit in striatal dopamine is the main cause of PD symptoms, it appears critical to preserve axon terminals. Significant axon protection from peripheral nerve Wallerian degeneration is observed in Wlds mice, a phenotype conferred by a spontaneo...
متن کاملNicotinamide and WLDS Act Together to Prevent Neurodegeneration in Glaucoma
Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitocho...
متن کاملSarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice.
Impaired neurodevelopment leads to several psychiatric disorders, including autism, schizophrenia and attention deficiency hyperactivity disorder. Our prior study showed that sterile alpha and TIR motif-containing 1 protein (Sarm1) regulates neuronal morphogenesis through at least two pathways. Sarm1 controls neuronal morphogenesis, including dendritic arborization, axonal outgrowth and establi...
متن کامل